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Abstract

Catastrophic forgetting is a significant challenge in
online continual learning (OCL), especially for non-
stationary data streams that do not have well-defined task
boundaries. This challenge is exacerbated by the mem-
ory constraints and privacy concerns inherent in rehearsal
buffers. To tackle catastrophic forgetting, in this paper,
we introduce Online-LoRA, a novel framework for task-free
OCL. Online-LoRA allows to finetune pre-trained Vision
Transformer (ViT) models in real-time to address the limita-
tions of rehearsal buffers and leverage pre-trained models’
performance benefits. As the main contribution, our ap-
proach features a novel online weight regularization strat-
egy to identify and consolidate important model parame-
ters. Moreover, Online-LoRA leverages the training dynam-
ics of loss values to enable the automatic recognition of the
data distribution shifts. Extensive experiments across many
task-free OCL scenarios and benchmark datasets (includ-
ing CIFAR-100, ImageNet-R, ImageNet-S, CUB-200 and
CORe50) demonstrate that Online-LoRA can be robustly
adapted to various ViT architectures, while achieving bet-
ter performance compared to SOTA methods 1.

1. Introduction

Continual learning (CL) is pivotal in enabling machine
learning systems to learn new concepts while preserving
the previously learned knowledge. This ability is crucial
for real-time applications like robotics, healthcare, and au-
tonomous driving [45, 80]. However, a major hurdle in CL
is catastrophic forgetting, where learning new information
impairs performance on previously learned data.

Existing CL methods are typically classified along two
dimensions: (1) task-based or task-free, depending on
whether the boundaries between different tasks are known
[30, 66, 99]; and (2) online or offline, based on whether the
setting allows for multiple iterations over the data (offline)
or requires a single pass through the data (online) [9,28,87].

In offline task-based CL, a series of tasks is presented se-
quentially. Typically, it is assumed that each task comprises

1Code: https://github.com/Christina200/Online-LoRA-official.git

a dataset with samples drawn from a distinct independent
and identically distributed (i.i.d.) distribution [22, 47]. The
samples are i.i.d. within the same task, though across tasks
the distributions may differ. Additionally, it is assumed that
the probability distribution from which the data is drawn re-
mains stationary between the training and inference phases
for any given task [56, 98]. This assumption simplifies the
learning problem by ensuring that the trained model can be
effectively applied to new data from the same task without
the need to account for distributional shifts [3].

While offline task-based CL has paved the way for un-
derstanding how models can sequentially learn, its assump-
tions are often misaligned with the intricacies of real-world
data. For instance, the need of completed training before
inference, known as the lack of anytime inference capabil-
ity, does not hold for applications where decisions must be
made on-the-fly based on data that is continuously chang-
ing. Moreover, the offline task-based CL assumes well-
defined task boundaries, a condition seldom met outside
tightly controlled experimental environments. In contrast,
real-world data streams are inherently continuous and lack
clear task boundaries, often exhibiting gradual transitions.

Motivated by the limitations of offline task-based setting,
in this paper we focus on task-free online CL; this scenario
is characterized by the constraints of seeing a stream of
samples only once, and the absence of knowledge regard-
ing task identities and task boundaries during both training
and inference [19, 31, 46, 96].

Pre-trained Vision Transformers [20] have demonstrated
superior performance on various vision tasks, hence in-
tegrating them into CL has attracted increasing interest
[24, 89, 100]. Indeed, the extensive prior knowledge of pre-
trained models enhances knowledge transfer [84], brings
significant performance improvements compared to tradi-
tional SOTA methods trained from scratch, and provides
robust generalizability and adaptability, especially valu-
able in data-scarce environments [26, 102]. Recent stud-
ies [17,77,90] have demonstrated the potential of using pa-
rameter efficient fine-tuning (PEFT) techniques like prompt
tuning [48] and Low-Rank Adaptation (LoRA) [35] with
pre-trained models for offline task-based CL.

Given the need for task-free OCL and the advantages
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provided by pre-trained models and PEFT methods, we
wonder, whether task-free OCL can benefit from pre-trained
models and PEFT as effectively as offline task-based CL. To
this end, we propose Online-LoRA, a new approach inte-
grating pre-trained ViT and LoRA into the task-free OCL
scenario. Online-LoRA learns incrementally with each new
piece of information. More precisely, we propose an ex-
tensible architecture that expands the model with additional
LoRA parameters where the loss surface plateaus [3]. Thus,
by utilizing loss plateaus to recognize shifts in data distri-
bution, our model remains robust in continuously chang-
ing environments. Furthermore, we propose a new online
parameter regularization, aimed to mitigate forgetting and
enhance memory efficiency. In our regularization, the im-
portance weights are calculated on the LoRA parameters
exclusively, rather than using the entire set of model param-
eters like in EWC [43]. This decreases the computational
and memory requirements significantly, thus enabling on-
line updates of the model parameter importance throughout
the learning process.

We summarize our main contributions as follows:

• We propose Online-LoRA, an innovative approach that
can efficiently learn from changing data in an online,
task-free manner, thus enabling inference at any time.
We achieve this through continual low rank adapta-
tion and automatic detection of data distribution shifts
based on loss plateaus.

• We present an online weight regularization mechanism
that effectively mitigates forgetting by adapting the es-
timation of model parameter importance to the incom-
ing data with minimal additional memory. We achieve
this by using a Laplace approximation to estimate the
uncertainty around the LoRA parameters.

• Our extensive evaluations with various ViT architec-
tures across multiple task-free OCL benchmarks, un-
der the settings of class and domain incremental learn-
ing, demonstrate that Online-LoRA consistently out-
performs existing SOTA methods. Moreover, Online-
LoRA exhibits robust performance across various task
sequence lengths and ViT architectures, showcasing its
effectiveness in diverse learning contexts.

2. Related work
2.1. Continual learning

Since many existing CL methods are offline task-based,
their transition to the online, task-free setting is not trivial.
Here, we discuss four categories of CL methods and their
adaptability to task-free OCL.

Architecture-based methods in CL generate task-specific
parameters by isolating subspaces or adding sub-networks

[21,23,37,39,65,69,70,93,94]. However, these approaches
need task identity during training and inference, making
them unsuitable for task-free settings; also, they typically
involve significant additional parameters [40, 86, 97]. In
contrast, [6] introduces virtual gradient updates from a vir-
tual model, enabling ‘any-time inference’ for OCL.

Regularization-based methods selectively regularize the
update of network parameters depending on their impor-
tance to the old tasks [10,53,92]. The importance of param-
eters can be determined using an approximation based on
Fisher Information Matrix (FIM), as in EWC [43], Synap-
tic Intelligence [98] and MAS [1]. However, because EWC
calculates the FIM at task transitions, it is not feasible in
task-free OCL. On the other hand, EWC++ [12] combines
the regularization approaches of EWC [43] and Synaptic In-
telligence [98] and makes it suitable for online settings.

Rehearsal-based methods address catastrophic forget-
ting by combining old training examples from a memory
buffer with current data [8, 11, 52, 56, 63, 68, 73, 82]. In
principle, these methods are suitable for our task-free OCL
setting, using strategies to retrieve and update the buffer
[2, 4, 18, 25, 38, 41, 71, 72]. For instance, REMIND [27]
enables efficient replay in OCL using compressed repre-
sentations, while [7] integrates rehearsal with regulariza-
tion techniques. However, their effectiveness decreases
with smaller buffers [5] and they pose challenges in data-
sensitive environments [74]

Prompt-based methods construct a pool of task-specific
prompts, select and attach them to the pre-trained model
[36, 67, 85]. Most of these methods assume explicit task
boundaries and require information on these task bound-
aries for training [77, 88]; this is not feasible in task-free
OCL. However, L2P [89] is suitable for task-free OCL as
it employs an instance-wise prompt query. Similarly, MVP
[61] is also suitable because it utilizes an instance-wise logit
masking. In the class-incremental experiments within the
original L2P codebase [89], a training trick is employed to
mask out the classes not relevant to the current task. This
trick contradicts the task-free OCL setting of having ”no
task identity information during training”. Thus, to ensure
a fair comparison, we evaluate our Online-LoRA against
L2P [89] and MVP [61] under the Stochastic Incremental
Blurry task boundary (Si-blurry) scenario, a new scenario
introduced in the MVP paper [61].

2.2. Parameter efficient fine-tuning

Parameter Efficient Fine-Tuning (PEFT) is an effective
approach for transfer learning [33]. Instead of fine-tuning
an entire pre-trained model, PEFT fine-tunes specific sub-
modules within the network by adding a small amount
of additional parameters. PEFT reduces computation, but
achieves similar performance to full fine-tuning. PEFT
has been successfully applied to vision transformer mod-
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Figure 1. The overview of Online-LoRA. As the data is continuously streamed (a), a new pair of trainable LoRA parameters (A4, B4) is
added (b) every time the loss surface encounters a plateau (c). Subsequently, the previous LoRA parameters (A1, B1;A2, B2;A3, B3) are
frozen (the lock sign in (b)) and merged to the weights of the pre-trained ViT model.

els [16, 49], and one notable example is LoRA [35].
In LoRA, for a pre-trained weight matrix Winit ∈ Rd×k,

the update ∆W in W ← Winit + ∆W is reformulated as
a low-rank decomposition: ∆W = BA, where A ∈ Rr×k

and B ∈ Rd×r, and the rank r ≪ min(d, k). Winit re-
mains fixed during training and does not receive gradient
updates, while A and B contain trainable parameters.

The application of PEFT in transformer-based models
has gained popularity in CL research [17, 76, 90]. For ex-
ample, SSIAT [79] incrementally tunes adapters [34] in pre-
trained ViT. Additionally, C-LoRA [75] and InfLoRA [51]
use separate LoRA sub-modules for each new task, and em-
ploy regularization to minimize interference between new
and old tasks. However, these methods depend on the ex-
plicit knowledge of task boundaries, hence they are task-
based offline CL approaches. To the best of our knowledge,
our Online-LoRA is the first to extend LoRA to the task-free
OCL scenario for transformer-based vision models.

3. Online-LoRA
3.1. Problem formulation

We define a data stream of unknown distributions D =
{D1, ..., DN} over X × Y , where X and Y are input and
output space respectively [58]. At each time step s, the sys-
tem receives a batch of non i.i.d samples xt

k, y
t
k from the

current distribution Dt of task t; the system sees this batch

only once. Moreover, at any moment s, the distribution Dt

can itself experience sudden or gradual changes from Dt

to Dt+1. The system is unaware of when and how these
distribution changes happen.

For simplicity, we assume that Dt is the data distribu-
tion of task t, and any shift from Dt to Dt+1 is sudden. Of
note, this remains a task-free setting, since gradual transi-
tions from Dt to Dt+1 can still be modeled by adding inter-
mediate tasks and making these distributions increasingly
similar, thus effectively blurring the explicit boundaries be-
tween tasks. Our Online-LoRA does not assume any task
boundaries at any time.

3.2. Loss-guided model adaptation

In existing LoRA-based CL methods [75,90], new LoRA
parameters are added for each new task t′, resulting in
a set of LoRA parameters denoted as {At′ , Bt′}, where
At′ ∈ Rd×r , Bt′ ∈ Rr×k , d and k are the input and output
dimensions of the attention layer, and rank r ≪ min(d, k).
When learning task t, if the initial ViT weights are denoted
as Winit, then for an input sample X , the model output Y
becomes:

Y = (Winit +

t∑
t′=0

Bt′At′)X (1)

This incremental model effectively mitigates the catas-
trophic forgetting by minimizing the interference between
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old and new tasks (see Figure 1). As shown, LoRA is ap-
plied only to the query and value projection matrices in all
the attention layers. Since data from previous tasks is not
available when training on future tasks, the LoRA parame-
ters of old tasks are frozen and merged with the pre-trained
weights to reduce the memory overhead. However, the ex-
isting LoRA-based methods rely on the knowledge of task
boundaries during training, as a new pair of LoRA param-
eters is initialized at the beginning of each new task. In
task-free OCL, data flows continuously without clear task
boundaries, and there is no information about the start or
the end of a task. There brings the need for a mechanism to
determine when to initialize the new LoRA parameters.

To this end, we consider the idea of loss surface [3].
As learning progresses, a decreasing loss indicates effective
learning from current samples. Conversely, an increasing
loss suggests a shift in data distribution, hindering effective
learning. We assume that the model converges before the
distribution shifts. Then between these phases, plateaus of
the loss surface occurs, signaling that the model has reached
a stable state by fitting well to the current data distribution
(see Appendix C for more details). At these plateaus, it
is best to consolidate the learned knowledge by freezing
the current LoRA weights and initializing a pair of new,
trainable LoRA parameters. To prevent the accumulation
of additional LoRA parameters, the frozen LoRA weights
are merged into the pre-trained attention weights.

3.3. Online parameter importance estimation

Many studies have demonstrated the efficacy of weight
regularization in reducing catastrophic forgetting [1,12,43];
this technique relies on estimating the importance of each
parameter. However, in an online scenario where data dis-
tribution shifts constantly, parameter importance also varies
continually. Therefore, a static estimation of parameter im-
portance is not applicable. Furthermore, Online-LoRA uti-
lizes pre-trained Vision Transformer (ViT) models, which
have a substantial number of parameters. Techniques such
as calculating the Fisher information matrix at each task-
switch for parameter importance estimation are computa-
tionally inefficient in this context [43].

However, it is still useful to consider the model training
from a Bayesian perspective as EWC does [43]. In Bayesian
machine learning, model parameters are treated as random
variables, and the prior knowledge about these parameters
is updated via Bayes’ rule. More precisely, given data D:

log p(θ|D) = log p(D|θ) + log p(θ)− log p(D) (2)

Assume D is split into two independent parts: current
sample x and data observed at the last time step Dprev . We
can rewrite the posterior probability of the parameters and
the equation (2) becomes:

log p(θ|D) = log p(x|θ) + log p(θ|Dprev)− log p(x) (3)

Since calculating the posterior probability is usually in-
tractable, following the work on the Laplace approximation
[57], we approximate this posterior as a Gaussian centered
at the maximum a-posteriori (MAP) solution θMAP with co-
variance given by the inverse of the Hessian. In our work,
the empirical Fisher information matrix is used to approx-
imate the covariance of the approximated posterior. More
specifically, the LoRA adapter

∑
t′ Bt′At′X is treated as

two separate linear layers with weights
∑

t′ At′ ∈ Rd×r

and
∑

t′ Bt′ ∈ Rr×k, respectively, rather than as a single
linear layer with a low rank weight matrix [95]; this division
enhances memory efficiency. In EWC [43], the size of the
importance weight matrix equals to the number of parame-
ters squared. For instance, to employ EWC in ViT-B/16, the
model needs to store and update a 86.6M×86.6M matrix,
representing a significant memory an computational over-
head. By handling the LoRA adapter as two distinct lay-
ers, our Online-LoRA approach employs two smaller im-
portance weight matrices, ΩA,l ∈ Rd×r and ΩB,l ∈ Rr×k,
for each attention layer. The combined size of these matri-
ces is proportional to the total number of LoRA parameters,
calculated as follows: #attention heads × 2 (for Q and V
projection matrices) × input size × rank × 2. For a ViT-
B/16 model with a LoRA rank of 4, this equates to a total
of: 12 heads × 2 × 768 input size × 4 rank × 2 = 147,456.
This additional memory footprint is negligible (∼0.17% of
the total parameters of the ViT-B/16 model), which enables
the online updates of the importance weights.

In offline CL, the parameter importance is computed
based on the entire training dataset of the current task. This
is not applicable to online CL because each training sample
can only be seen once. We employ a small hard buffer con-
taining samples with the highest loss (computed with the
current model), selected from both the current sample and
the existing buffer. The hard buffer is continually updated
to replace any samples whose loss decreases significantly as
the model trains, ensuring that it contains genuinely chal-
lenging examples. Due to concerns about memory con-
straints and privacy, the hard buffer is minimal (holds only
4 samples), yet vital to parameter importance estimation.

Therefore, we propose a memory and computationally
efficient estimation of the parameter importance, focus-
ing on the sensitivity of loss relative to LoRA parame-
ters. The importance weight matrices ΩA,l ∈ Rd×r and
ΩB,l ∈ Rr×k match the dimensions of LoRA parameters:

ΩA,l
ij =

1

N

N∑
k=1

∇WA,l
ij

log p(xk|θ) ◦ ∇WA,l
ij

log p(xk|θ)

(4)

ΩB,l
ij =

1

N

N∑
k=1

∇WB,l
ij

log p(xk|θ) ◦ ∇WB,l
ij

log p(xk|θ)

(5)
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with parameters WA,l and WB,l of the new and trainable
LoRA modules added to the lth attention layer. xk are sam-
ples from the hard buffer described above. The parameters
denoted by θ encompass the entire model, which includes
the pre-trained ViT, the frozen LoRA parameters, and the
new trainable LoRA parameters WA,l and WB,l for all at-
tention layers l. Finally, ◦ is the Hadamard product (i.e. the
element-wise product of two matrices).

After updating the importance weights, the model con-
tinues the learning process while penalizing changes to pa-
rameters that have been identified as important so far. Be-
cause θMAP = argmax

θ
L(y,D; θ), θMAP is given by model

weights at the last loss surface plateau. As such, our final
learning objective is:

min
WA,WB

L(F (X; θ), Y )+L(F (XB ; θ), YB)+LLoRA(W
A,WB)

(6)

LLoRA(W
A,WB) =

λ

2

∑
l∈|Attn|

((ΩA,l ◦ (WA,l) ◦ (WA,l))

+ (ΩB,l ◦ (WB,l) ◦ (WB,l))) (7)

where Attn is the set of attention layers in the
model, L(F (X; θ), Y ) is the loss of current samples,
L(F (XB ; θ), YB) is the loss of hard buffer samples. ◦ is
the element-wise product of two matrices.

4. Experiments
4.1. Evaluation benchmarks

We evaluate our approach under three different scenar-
ios: disjoint class-incremental, Si-Blurry class-incremental,
and domain-incremental.

Disjoint class-incremental setting is when the datasets
are split into disjoint tasks, each consisting of a unique set of
classes. We conduct experiments with three datasets under
this setting: Split-CIFAR-100 splits the CIFAR-100 dataset
[44] into 10 tasks with 10 classes per task. Split-ImageNet-
R splits the ImageNet-R dataset [32] into 10 tasks with
20 classes per task. Split-ImageNet-S splits the ImageNet-
Sketch dataset [83] randomly into 10 tasks with 100 classes
per task or into 20 tasks with 50 classes per task. Split-
CUB-200 splits the CUB-200-2011 dataset [81] into 5 tasks
with 40 classes per task.

Stochastic incremental-Blurry (Si-Blurry) [62] class-
incremental setting is when the class distributions change
in a stochastic manner, with classes overlapping across tasks
and the task boundaries being dynamic and not clearly de-
fined. We randomly select 50% of the entire classes to be
”disjoint classes” (newly encountered classes that never ap-
peared before), and 10% to be ”blurry classes” (classes that
do not belong to a fixed task and may appear in multiple
learning tasks over time).

Domain-incremental setting is when the input distribu-
tion shifts over time, but the classes remain consistent. We
use the CORe50 dataset [55] for this setting; it has 11 dis-
tinct domains (8 for training, 3 for testing). The samples
from the training domains arrive sequentially.

4.2. Experimental details

Baselines We compare Online-LoRA against SOTA task-
free OCL methods. The Upper-bound (UB) baseline refers
to supervised fine-tuning on the entire dataset of i.i.d. data,
representing the optimal performance. The SOTA meth-
ods selected for comparison include AGEM [13], ER [14],
EWC++ [12], MIR [2], GDumb [64], DER++ [8], PCR
[52], LODE (with DER++ [8]) [50], EMA (with DER++ [8]
and with RAR [101]) [78], L2P [89] and MVP [61].

Evaluation metrics To evaluate the OCL performance,
we choose three metrics, AAUC, AFinal, and Forgetting. The
AAUC [91] evaluates the model accuracy throughout train-
ing, measuring the performance of anytime inference. The
final accuracy AFinal [15,59] measures the performance after
the training is finished. Forgetting [89] measures the aver-
age difference between the final performance obtained for
each task compared to the best performance on each task.
Higher AAUC and AFinal are better, while lower Forgetting
is better. See Appendix A for the detailed definitions.

Implementation details We employ a ViT-B/16 (86.6M
parameters) and a ViT-S/16 (48.6M parameters) [20] pre-
trained on ImageNet as our backbone. For each setup, we
evaluate all methods, including ours and other SOTA meth-
ods, using the same pre-trained models (see Appendix F.2).

We use the Adam optimizer [42] to train our Online-
LoRA, with a 0.0002 learning rate for ViT-B/16 and 0.0005
for ViT-S/16. We set the size of the minimal hard buffer
to 4, regularization factor λ to 2000 for all settings. See
Appendix B for experimental details of Online-LoRA. For
the other approaches, we refer to their original codebases
for implementation and hyperparameter selection for a fair
comparison (details in Appendix F). The buffer size of the
replay-based methods is 500 (results for other buffer sizes
in Appendix G). Given our focus on online CL, the training
epoch is set to 1 for all experiments.

4.3. Main results

Results on disjoint class-incremental setting. Table 1
summarizes the results on the disjoint class-incremental
benchmarks Split CIFAR-100, Split ImageNet-R, Split
ImageNet-S, and Split CUB-200. Our Online-LoRA, out-
performs all other compared methods consistently across
the ViT-B/16 and ViT-S/16. On Split ImageNet-S, Online-
LoRA exhibits standout performance, significantly outper-
forming all other methods, and notably reducing the gap to
the upper bound.
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Split-CIFAR-100 Split-ImageNet-R Split-ImageNet-S Split-CUB-200

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)

ViT-B/16

AGEM [13] 12.67±1.87 82.51±2.27 5.60±2.74 53.97±1.97 0.16±0.04 9.42±0.17 10.84±1.57 47.79±0.04

ER [14] 44.85±1.83 44.67±4.29 40.99±3.96 32.38±0.89 30.21±0.70 37.14±1.83 31.66±0.83 14.23±0.07

EWC++ [12] 10.61±0.74 84.10±1.11 3.86±2.02 56.95±1.46 0.32±0.28 22.46±4.69 26.14±3.46 47.69±0.07

MIR [2] 48.36±3.11 43.41±1.02 41.51±2.99 31.32±5.17 30.33±3.81 35.92±1.75 31.64±2.97 23.43±0.05

GDumb [64] 41.00±19.97 - 8.87±1.36 - 1.65±0.22 - 9.09±1.03 -
PCR [52] 48.48±0.15 46.23±1.29 46.11±3.03 25.50±0.41 38.75±0.22 35.01±2.12 41.11±1.43 29.64±1.20

DER++ [8] 36.64±6.11 56.94±7.55 30.90±8.04 24.26±4.14 6.47±0.06 15.34±0.15 26.61±1.27 32.16±0.55

LODE (DER++) [50] 44.29±1.48 45.54±3.32 42.20±6.46 31.83±1.05 9.97±2.29 8.48±1.24 39.20±4.25 41.64±3.59

EMA (DER++) [78] 42.28±4.36 55.59±1.48 41.75±1.98 32.65±1.55 16.88±2.23 36.28±1.09 35.26±3.31 25.55±3.35

EMA (RAR) [78] 47.10±0.82 50.01±0.35 30.04±0.33 39.36±0.04 14.06±0.37 36.28±1.09 33.34±1.11 28.68±0.56

Ours 49.40±1.36 41.74±2.58 48.18±0.63 23.85±1.48 47.06±0.24 28.09±3.25 41.46±0.31 13.64±0.68

UB 89.50±0.04 - 76.78±0.44 - 63.82±0.02 - 82.81±1.07 -

ViT-S/16

AGEM [13] 7.43±2.15 82.45±5.46 2.35±0.87 48.01±0.05 2.75±2.86 18.81±0.44 1.40±0.17 27.06±1.39

ER [14] 31.91±2.06 52.21±6.41 32.73±0.20 45.37±1.72 19.53±1.44 45.10±0.48 21.81±3.02 24.52±2.98

EWC++ [12] 6.80±2.13 81.59±7.43 1.32±0.83 53.54±0.19 4.08±3.24 21.28±0.46 2.07±0.54 28.44±0.83

MIR [2] 29.08±1.14 39.42±1.60 34.73±0.29 48.66±0.69 13.96±1.95 42.61±0.08 22.95±1.12 32.54±0.88

GDumb [64] 10.87±4.94 - 5.33±1.09 - 2.09±0.32 - 3.28±0.99 -
PCR [52] 32.89±1.47 39.90±2.51 21.96±0.27 45.12±0.08 14.37±0.95 43.96±0.48 22.28±2.73 29.87±0.04

DER++ [8] 17.67±4.04 51.65±3.67 22.17±4.27 54.79±0.89 18.15±0.66 46.22±0.95 29.53±2.37 21.49±1.16

LODE (DER++) [50] 28.65±3.06 40.42±1.58 31.65±0.72 43.72±0.09 17.59±0.84 47.85±0.23 26.81±0.89 21.86±2.30

EMA (DER++) [78] 12.76±0.65 41.17±1.75 20.89±3.05 48.03±1.79 12.93±0.13 22.59±0.16 35.79±5.27 24.85±4.20

EMA (RAR) [78] 19.21±2.16 41.99±1.73 16.11±0.35 50.58±0.83 14.50±2.71 23.79±2.91 34.53±1.04 30.19±0.36

Ours 32.16±0.24 38.64±0.65 33.21±0.50 42.76±0.18 22.45±0.43 44.56±0.24 37.41±0.16 20.78±2.54

UB 86.55±0.01 - 69.94±0.34 - 59.28±0.11 - 73.91±1.16 -

Table 1. Results of disjoint class-incremental learning. ‘↑’ means higher is better and ‘↓’ means lower is better. Regularization-based
methods (EWC++, AGEM, and LODE) yield low accuracy and low forgetting on Split ImageNet-S. This is because their overly rigid
constraints on model updates hinder effective learning. The best results are noted by bold. UB is the upper-bound performance.

CIFAR-100 [44] ImageNet-R [32] ImageNet-S [83]
AAUC (↑) AFinal (↑) AAUC (↑) AFinal (↑) AAUC (↑) AFinal (↑)

ViT-B/16

L2P 43.01±9.37 39.86±2.28 22.71±1.86 27.08±2.49 10.02±0.42 13.58±4.04

MVP 47.52±9.74 44.49±0.93 27.79±0.62 31.64±1.77 10.68±0.45 13.99±1.73

Ours 60.12±5.79 61.70±6.29 45.05±1.59 48.00±6.01 30.81±2.09 30.22±4.36

UB 89.50±0.04 76.78±0.44 63.82±0.02

ViT-S/16

L2P 37.82±12.19 30.88±1.39 24.31±1.83 21.83±2.13 2.00±0.12 3.61±1.08

MVP 40.31±9.52 35.55±2.11 27.04±1.09 26.67±3.70 2.27±0.14 3.72±0.77

Ours 52.84±7.97 58.72±1.44 39.47±1.93 36.61±4.63 15.35±0.92 20.18±1.84

UB 86.55±0.01 69.94±0.34 59.28±0.11

Table 2. Results of Si-blurry class-incremental learning. ‘↑’ means higher is better and ‘↓’ means lower is better. All datasets are split into
5 blurry tasks. To ensure a fair comparison with L2P [89] and MVP [61], we exclude the loss from hard buffer samples in Online-LoRA.
The best results are noted by bold.

As shown in Table 1, Online-LoRA maintains a consis-
tent and strong performance across various dataset sizes.
In comparison, GDumb [64] exhibits unstable performance
on the smaller dataset, Split CIFAR-100, and performs
poorly on larger datasets such as Split-ImageNet-R and
Split ImageNet-S. The main issue with GDumb is its ex-
clusive reliance on a replay buffer to retrain the model.
With larger datasets, a small buffer size tends to cause class
imbalance, as it cannot represent the dataset diversity ade-
quately. Online-LoRA, on the other hand, does not face this
issue because it utilizes a small but highly targeted ’hard
buffer’ consisting of samples that the current model finds
most challenging, as indicated by their high loss values.

This selective buffering approach is not only effective, as
shown in Section 4.5, but it also sidesteps the drawbacks of
a large memory buffer by not overly relying on it.

Results on Si-blurry class-incremental setting.
Table 2 summarizes the results on the Si-blurry class-
incremental benchmarks with datasets CIFAR-100,
ImageNet-R, and ImageNet-S. In the Si-blurry scenario,
Online-LoRA consistently outperforms all the considered
methods by significant margins across both metrics, AAUC
and AFinal. The superior performance in anytime infer-
ence can be largely attributed to Online-LoRA strategic
utilization of loss surface plateaus, which consolidates
the knowledge precisely when needed. Online-LoRA is
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(b) ImageNet-R with ViT-B/16
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(c) ImageNet-S with ViT-B/16
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(e) ImageNet-R with ViT-S/16
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(f) ImageNet-S with ViT-S/16

Figure 2. Average accuracy versus number of samples for Si-Blurry CIFAR-100, ImageNet-R, and ImageNet-S scenarios. As shown, the
Online-LoRA consistently outperforms competing methods, maintaining high accuracy throughout.

also more flexible than EWC [43] which does so only at
specific discrete moments; Online-LoRA also avoids the
excessive frequency of updates that introduce noise as seen
in EWC++ [12].

Figure 2 displays the trend of accuracy as more samples
are provided, highlighting the consistent performance of
Online-LoRA across two different ViT architectures. Com-
pared to other methods, Online-LoRA effectively learns
new knowledge from incoming samples, which leads to an
increase in accuracy.

Results on domain-incremental setting. Table 3 sum-
marizes the results on the domain-incremental setting. Our
proposed method, Online-LoRA, not only significantly out-
performs other SOTA methods, but also closes a substantial
portion of the gap with the upper-bound (UB) performance.

To summarize, the Online-LoRA consistently achieves
superior performance under various setups. These results
indicate its robustness and adaptability, not only in differ-
ent ViT setups, but also for dynamically evolving data. In
addition to effectively mitigating forgetting, Online-LoRA
shows good plasticity.

4.4. Exploration with length of task sequence
Table 4 summarizes the results on Split ImageNet-S

dataset across varying task sequence lengths; Table 5 sum-
marizes the results on Si-blurry ImageNet-S. As the task
sequence is longer, all methods experience a decline in per-
formance. However, Online-LoRA exhibits the smallest re-
duction in performance, showcasing its robustness against
longer task sequences. This can be attributed to its utiliza-
tion of loss surface plateaus, which effectively captures and
adapts to shifts in data distribution at instance level.

ViT-B/16 ViT-S/16

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)
AGEM [13] 80.15±2.97 2.23±0.81 78.22±3.51 3.19±0.09

ER [14] 85.85±1.35 0.72±0.03 78.99±3.85 5.04±0.10

EWC++ [12] 78.65±6.51 2.31±0.17 79.03±4.54 4.80±0.69

MIR [2] 74.35±4.07 11.01±1.05 86.49±0.81 2.53±0.84

GDumb [64] 77.20±3.49 - 75.64±2.92 -
PCR [52] 87.16±0.73 0.78±0.03 75.20±1.48 0.61±0.02

DER++ [8] 81.88±7.06 10.13±7.00 89.33±0.62 0.42±0.57

LODE (DER++) [50] 77.02±2.22 17.30±2.82 83.48±5.84 24.54±0.94

L2P [89] 87.97±0.37 0.00±0.00 86.47±0.23 0.00±0.00

MVP [61] 84.82±0.54 0.00±0.00 79.85±0.33 3.55±0.39

Ours 93.71±0.01 0.00±0.00 90.96±0.02 0.00±0.00

Upper Bound (UB) 95.6±0.01 - 93.56±0.01 -

Table 3. Results of domain-incremental learning on CORe50 [55].
‘↑’ means higher is better and ‘↓’ means lower is better. Online-
LoRA not only achieves the highest final accuracy but also demon-
strates the lowest forgetting.

In contrast, for prompt-based learning methods such as
L2P, longer task sequences challenge the capacity of prompt
pool as more task-specific information needs to be encoded.
Similarly, for replay-based methods, the strategy of select-
ing informative samples from the buffer is prone to biases
in longer task sequences. This bias may result in an inade-
quate representation of earlier tasks or an overemphasis on
more recent tasks, hurting the methods overall performance.

Furthermore, Figure 3 shows the accuracy on the valida-
tion set for four tasks at the time they are first encountered
and after each subsequent task is learned (see Appendix I
for results of other tasks). As shown in Figure 3, Online-
LoRA consistently outperforms the other SOTA methods in
terms of preserving the performance of previously learned
tasks, which underscores the effectiveness of our online pa-
rameter regularization in mitigating catastrophic forgetting.

7



0 3 6 9 12 15 18
Learning Task

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(a) Task #5

0 3 6 9 12 15 18
Learning Task

0

10

20

30

40

50

60

Ac
cu

ra
cy

 [%
]

AGEM
ER
EWC++
GDumb
MIR
PCR
Ours

(b) Task #7
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(c) Task #10
Figure 3. Test accuracy of three tasks versus the number of learning tasks. ViT-B/16 model is used on Split ImageNet-S with 20 tasks.
The accuracy for each task prior to the model being trained on it is recorded as zero, since no measurements are taken at that stage, as the
model has not yet been exposed to the corresponding task.

Method 10 tasks 20 tasks

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)
AGEM [13] 0.16±0.04 9.42±0.17 0.11±0.05 7.96±0.10

ER [14] 30.21±0.70 37.14±1.83 22.81±0.30 43.61±0.16

EWC++ [12] 0.32±0.28 22.46±4.69 0.11±0.05 5.26±0.45

MIR [2] 30.33±3.81 35.92±1.75 22.04±0.41 39.17±0.13

GDumb [64] 1.65±0.22 - 1.97±0.79 -
PCR [52] 38.75±0.22 35.01±2.12 17.87±2.18 45.46±0.07

DER++ [8] 6.47±0.06 15.34±0.15 2.29±0.23 23.14±0.06

LODE (DER++) [50] 9.97±2.29 8.48±1.24 13.47±0.66 35.89±1.63

EMA (DER++) [78] 16.88±2.23 36.28±1.09 11.55±0.66 38.56±0.22

EMA (RAR) [78] 14.06±0.37 36.28±1.09 9.05±0.60 29.77±1.70

Ours 47.06±0.24 28.09±3.25 44.19±2.09 28.48±0.24

Upper Bound (UB) 63.82±0.02

Table 4. Comparison with other methods on Split ImageNet-S for
different lengths of task sequences. ‘↑’ means higher is better and
‘↓’ means lower is better. ViT-B/16 model is used.

Method Task sequence ImageNet-S
AAUC (↑) AFinal (↑)

L2P [89]
5 tasks

10.02±0.42 13.58±4.04

MVP [61] 10.68±0.45 13.99±1.73

Ours 30.81±2.09 30.22±4.36

L2P [89]
10 tasks

9.06±0.43 12.49±3.39

MVP [61] 9.50±0.29 12.24±2.16

Ours 30.69±0.59 31.44±4.39

L2P [89]
20 tasks

6.57±0.54 7.13±0.89

MVP [61] 7.87±0.24 8.98±1.49

Ours 26.91±0.25 25.73±6.15

Table 5. Comparison with prompt-based methods on Si-blurry
ImageNet-S at different length of task sequence. ViT-B/16 is used.

4.5. Ablation study
Table 6 shows the ablation study on the effectiveness of

each component (“incremental LoRA” and “hard loss”) of
Online-LoRA on Split ImageNet-R (10 tasks). The results
demonstrate the crucial role of each component of Online-
LoRA in overall performance. More results in Appendix E.

Simply fine-tuning a single set of LoRA parameters (i.e.
without incorporating any components of Online-LoRA) re-
sults in significantly worse performance compared to our
approach, with a 20% drop in accuracy (from 48.23% to
28.68%). Additionally, excluding the loss from hard buffer

Incremental LoRA Hard loss AFinal (↑) Forgetting (↓)
- - 28.68±0.13 53.45±0.04

✓ - 34.74±0.31 34.37±1.15

- ✓ 36.08±0.19 35.75±0.33

✓ ✓ 48.23±0.74 23.85±1.08

Table 6. Ablation results of ViT-B/16 model on Split ImageNet-R
dataset. ‘↑’ means higher is better and ‘↓’ means lower is better.
”Incremental LoRA”: introducing new, trainable LoRA at each
loss plateau with the model parameter regularization in Equation 7.
. ”Hard loss”: including L(F (XB ; θ), YB) (the loss from hard
buffer samples) in the final learning objective in Equation 6. ✓
indicates the presence of the component, − indicates its absence.

samples within the Online-LoRA framework leads to a sub-
stantial performance decline from 48.23% to 34.74% (a
13.5% decrease). This emphasizes the crucial role of main-
taining a minimal buffer with only the four most challeng-
ing samples in mitigating forgetting.

Furthermore, the absence of new LoRA initialized at
plateaus of the loss surface and model parameter regular-
ization results in a significant performance decline of 12%,
from 48.23% to 36.08%. This highlights the importance
of continuously adding new LoRA parameters to minimize
task interference and implementing online weight regular-
ization to prevent catastrophic forgetting.

5. Conclusion
In this paper, we have presented Online-LoRA, a novel

method for task-free online CL. Online-LoRA dynamically
analyzes the loss surface to adapt the model to changing
data distributions and uses online weight regularization to
prevent catastrophic forgetting.

We have also provided empirical evidence to show
the effectiveness of Online-LoRA across various scenar-
ios. Notably, Online-LoRA shows substantial performance
advantage over other state-of-the-art methods in scenar-
ios involving long task sequences. Furthermore, Online-
LoRA’s performance closely approaches the upper bound in
domain-incremental settings. Given the widespread adop-
tion of pre-trained models in CL, Online-LoRA offers a
strong foundation for practical task-free online CL systems.
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In this supplementary materials, a unique labeling with
an ”S” prefix (e.g., S1, S2, etc.) is used, distinguishing them
from the main paper references.

A. Evaluation Metrics
In this section, we present the definitions of the three

evaluation metrics we used in our experiments, supplement-
ing Section 4.2 in the main paper.

Let ai,j be the testing accuracy on the ith task after train-
ing on jth task. The total number of tasks is denoted by T .

Final Accuracy The final accuracy AFinal is calculated as
the average accuracy across all tasks after training on the
final task:

AFinal =
1

T

T∑
i=1

ai,T (8)

Area Under the Curve of Accuracy The AAUC (Area
Under the Curve of Accuracy) is defined as the area under
the curve (AUC) of the accuracy-to-# of samples curve [91].
To construct the curve, the accuracy is measure after each
sample is observed. AAUC measures the any time inference
accuracy of the model:

AAUC =

k∑
i=1

f(i ·∆n) ·∆n, (9)

where the step size ∆n is defined as ∆n = 1, rep-
resenting the number of samples observed between infer-
ence queries, and f(·) denotes the curve in the accuracy-
to-{number of samples} plot. A high AAUC indicates that
the method consistently maintains high accuracy through-
out training.

Forgetting Forgetting is defined as the averaged differ-
ences between the historical maximum accuracy of task k
and the accuracy of task k after all tasks finish training:

Forgetting =
1

T − 1

T−1∑
k=1

max
t=1,2,...,T−1

(ak,t − ak,T ) (10)

The last task T is excluded because the forgetting of the
last task is always 0.

B. Experimental Details
In this section, we provide details of the experiments we

reported in the paper, supplementing Section 4 in the main
paper.

Data preprocessing Because we focus on the ViT archi-
tectures ViT-B/16 and ViT-S/16, all input images are resized
to 224×224 and normalized to [0, 1].

Hyperparameters For tuning the threshold values
for each dataset (CIFAR-100 [44], ImageNet-R [32],
ImageNet-S [83], CUB-200 [81], and CORe50 [55]), we
conducted a grid search following the protocol in [58].
The threshold grid is shown in Table 7. Table 8 shows
the threshold values we used in our experiments. For
CIFAR-100, ImageNet-R, and ImageNet-S, these threshold
values remain consistent in both disjoint and Si-blurry
class-incremental scenarios.

We set the regularization factor λ=2000.0 (see Equa-
tion 7 in the main paper) for all experiments.

C. Loss Surface
Figure 4 shows more qualitative examples of how the

loss surface recognizes data distribution shifts, supplement-
ing Section 3.2 in the main paper. MAS [3] introduces the
loss surface to derive information about incoming stream-
ing data in the task-free scenario. As shown in Figure 4,
the peaks on the loss surface indicate shifts in the input data
distribution. And the stable regions, namely plateaus, sig-
nal the convergence of the model. For instance, the Split
CIFAR-100 dataset has 10 distinct tasks, with the data dis-
tribution remaining constant within each task. As a result,
during the learning process of Split CIFAR-100, there are 9
shifts in data distribution, corresponding to 9 peaks in the
loss surface, as illustrated in Figure 4.

To identify plateaus on the loss surface, we employ a loss
window, which is a sliding window that moves across con-
secutive training losses. Within this window, we closely ob-
serve both the mean and variance of the losses. A plateau is
identified when both metrics fall below a predefined thresh-
old (see Appendix B for details). Upon detecting a plateau,
we proceed to introduce new LoRA parameters and update
the estimation of the model parameter importance. Our goal
in identifying plateaus is to mark periods of stable predic-
tion following shifts in data distribution. Therefore, we only
classify a phase as a plateau if it follows a peak. A peak
is recognized when the loss window’s mean increases by
an amount exceeding the standard deviation of the window
within a single batch.

D. Results of Swin Transformer
In this section, we present the results for the disjoint

class-incremental and domain-incremental settings (for de-
tails on these settings, see Section 4.1 in the main paper)
using the Swin Transformer architecture [54]. For a fair
comparison, the hyperparameters for the baseline methods
are set according to the descriptions in Appendix F.3. For
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Threshold CIFAR-100 ImageNet-R ImageNet-S CUB-200 CORe50

Mean [2.2, 2.6, 2.8, 3.0] [5.2, 5.4, 5.6, 5.8, 6.0] [18.0, 24.0, 30.0]
Variance [0.02, 0.03, 0.04, 0.06, 0.08, 0.1] [0.6, 0.8, 1.0, 1.2]

Table 7. Hyperparameter grid for the mean and variance threshold values of the loss window in our Online-LoRA.

Threshold CIFAR-100 ImageNet-R ImageNet-S CORe50 CUB-200

Mean 2.6 5.2 5.6 6.0 24.0
Variance 0.03 0.02 0.06 0.1 1.0

Table 8. Mean and variance thresholds of the loss window for
different datasets.
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Figure 4. Loss surface of Online-LoRA on Split CIFAR-100 using
ViT-B/16 model. Note that other peaks and plateaus exist but are
not marked.

our method, we use a learning rate of 0.0003 for the Swin
Transformer.

As shown in Table 9, our approach consistently out-
performs other baseline methods in both disjoint class-
incremental and domain-incremental learning settings. This
demonstrates that our method remains effective across var-
ious ViT architectures, extending beyond the ViT-B/16 and
ViT-S/16 models reported in Section 4.3 of the main paper.

E. Supplementary Ablation Study
E.1. Ablation Study on Imagenet-S Dataset

In addition to the ablation results on Split Imagenet-R
presented in Section 4.5 of the main paper, this section pro-
vides further ablation results on the Split Imagenet-Sketch
dataset with varying task lengths. As shown in Table 10,
our Online-LoRA consistently outperforms other variants
that lack certain components. These results demonstrate
that both the hard buffer loss and incremental LoRA, along
with online parameter regularization, are crucial for the per-
formance of our approach.

The baseline involves continuous fine-tuning of a single
set of LoRA parameters. In contrast, Online-LoRA intro-

duces an incremental LoRA architecture coupled with pa-
rameter importance-based regularization, and preserves a
hard buffer along with its loss computations. Individually,
each component improves performance and reduces forget-
ting. However, integrating both components into the base-
line achieves the optimal performance, demonstrating the
efficacy of our complete approach.

E.2. Impact of Pre-trained Weights

In this section, we demonstrate that our experimental set-
tings do not provide any unfair advantage to our Online-
LoRA approach through the use of pre-trained ViT models.

First, it is important to note that all baseline methods in
our experiments utilize the same pre-trained ViT models as
their backbones, just like Online-LoRA. Consequently, all
methods benefit from the pre-training to varying extents,
particularly those originally implemented with ResNet18
backbones (Table 12). For detailed information on the back-
bones used by each baseline, please refer to Appendix F.2.

Second, we show that simply using pre-trained models
without applying any CL methods or strategies fails to yield
competitive performance. To illustrate this, we introduce
three simple baselines:

• Frozen FT: This baseline freezes the pre-trained back-
bone (feature extractor). Only the classification head
(the final layer used for classification) is continuously
fine-tuned on the data stream. Given that the model is
pre-trained on the ImageNet-21K dataset, if any unfair
advantage exists due to data leakage or other factors,
it should be evident here by showing strong perfor-
mance.

• Continual FT: This baseline fully fine-tunes the pre-
trained model, including both the backbone and the
classification head, on each new data batch. This is
consistent with our OCL setting where the model en-
counters each data batch only once. If the pre-trained
weights alone brings any unfair advantage, this base-
line should perform competitively, similar to methods
specifically designed for CL.

• Random Head: This baseline uses the pre-trained
model’s backbone with a newly initialized classifier
head and performs only inference without any fine-
tuning. Since the classifier head is randomly initial-
ized, it should provide a clear lower bound for per-
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Method Split-ImageNet-S CORe50

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)
AGEM [13] 31.67±0.96 50.12±0.27 90.15±1.31 1.16±0.05

ER [14] 42.60±0.75 38.68±0.26 88.93±2.99 4.16±0.09

EWC++ [12] 29.57±1.57 51.87±0.04 90.91±1.28 0.04±0.02

MIR [2] 42.90±0.19 38.49±0.15 87.47±0.65 5.67±0.14

GDumb [64] 14.76±1.13 - 79.52±3.00 -
Ours 53.75±0.29 32.86±0.89 95.29±0.06 0.00±0.00

UB 71.98±0.23 - 97.56±0.02 -

Table 9. Results of disjoint class-incremental learning and domain-incremental learning using Swin Transformer. ‘↑’ means higher is better
and ‘↓’ means lower is better. The best results are noted by bold. UB is the upper-bound performance. With Swin Transformer, our Online-
LoRA method consistently outperforms other baseline methods across various settings, demonstrating its adaptability and effectiveness
across different ViT architectures.

Incremental LoRA Hard loss 10 tasks 20 tasks

AFinal (↑) Forgetting (↓) AFinal (↑) Forgetting (↓)
- - 30.66±0.25 38.70±0.40 24.49±2.61 39.29±2.57

✓ - 31.11±2.60 34.62±2.98 32.47±0.29 33.14±1.39

- ✓ 36.26±0.12 39.29±2.57 35.43±4.99 32.56±2.72

✓ ✓ 47.06±0.24 28.09±3.25 44.19±2.09 28.48±0.24

Table 10. Ablation results of ViT-B/16 model on Split ImageNet-Sketch dataset. ‘↑’ means higher is better and ‘↓’ means lower is better.
”Incremental LoRA”: introducing new, trainable LoRA at each loss plateau with the model parameter regularization in Equation 7 in paper.
”Hard loss”: including L(F (XB ; θ), YB) (the loss from hard buffer samples) in the final learning objective in Equation 6 in paper. A check
mark (✓) indicates the presence of the component, while a dash (—) indicates its absence.

formance, demonstrating that without any adaptation
or learning, the model’s performance is essentially at
chance level.

As shown in Table 11, Random Head baseline achieves
near-zero accuracy, confirming that merely using pre-
trained weights without adaptation to the test dataset does
not have an advantage. Although the Frozen FT and Con-
tinual FT baselines outperform some CL methods (which
also use the same pre-trained models), they still suffer from
severe forgetting and exhibit a significant performance gap
compared to other methods, particularly our Online-LoRA,
with nearly a 20% difference in final accuracy and a 30%
difference in forgetting.

These results demonstrate that the performance advan-
tages of our Online-LoRA method over the baseline CL
methods are not simply due to the use of pre-trained models.
Instead, they arise from the effectiveness of our approach.
The pre-trained weights provide a common foundation for
all methods, but it is our approach that leads to superior per-
formance.

F. Baseline Settings
In this section, we provide the experimental settings for

the baseline methods used in our experiments2.

F.1. Overview of Baselines

• AGEM [13]: Averaged Gradient Episodic Memory,
utilizes samples in the memory buffer to constrain pa-
rameter updates.

• ER [14]: Experience replay, a rehearsal-based method
with random sampling in memory retrieval and reser-
voir sampling in memory update.

• EWC++ [12]: An online version of EWC [43], a regu-
larization method that limits the update of parameters
crucial to past tasks.

• MIR [2]: Maximally Interfered Retrieval, a rehearsal-
based method that retrieves memory samples with loss

2Codebases used: https://github.com/AlbinSou/online ema.git,
https://github.com/liangyanshuo/Loss-Decoupling-for-Task-Agnostic-
Continual-Learning.git, https://github.com/FelixHuiweiLin/PCR.git,
https://github.com/RaptorMai/online-continual-learning.git
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Method Accuracy (↑) Forgetting (↓)

Random Head 0.08±0.00 -
Frozen FT 27.98±0.29 55.12±0.43

Continual FT 28.49±0.21 53.49±0.07

AGEM [13] 5.60±2.74 53.97±1.97

ER [14] 40.99±3.96 32.38±0.89

EWC++ [12] 3.86±2.02 56.95±1.46

MIR [2] 41.51±2.99 31.32±5.17

GDumb [64] 1.65±0.22 -
PCR [52] 46.11±3.03 25.50±0.41

DER++ [8] 30.90±8.04 24.26±4.14

LODE (DER++) [50] 42.20±6.46 31.83±1.05

EMA (DER++) [78] 41.75±1.98 32.65±1.55

EMA (RAR) [78] 30.04±0.33 39.36±0.04

Online-LoRA (ours) 48.18±0.63 23.85±1.48

UB 63.82±0.02 -

Table 11. Performance comparison between pre-trained models
without CL strategies and pre-trained models with CL strategies on
Split ImageNet-R (online class-incremental learning setting). ViT-
B/16 backbone is used. While some methods do not outperform
simple fine-tuning on a continuous data stream, other CL methods
provide significant performance improvements to the pre-trained
model. This demonstrates that the advantages of CL methods, in-
cluding Online-LoRA, are not solely due to the use of pre-trained
weights but also stem from the effectiveness of the methods them-
selves. UB is the upper-bound baseline trained on the i.i.d. data of
the datasets. The best results are noted by bold.

increases given the estimated parameter update based
on the current batch.

• GDumb [64]: Greedy Sampler and Dumb Learner,
a strong baseline that greedily updates the memory
buffer from the data stream with the constraint to keep
a balanced class distribution.

• PCR [52]: Proxy-based contrastive replay, a rehearsal-
based method that replaces the samples for anchor with
proxies in a contrastive-based loss.

• DER++ [8]: Dark Experience Replay++, a rehearsal-
based method using knowledge distillation from past
experiences.

• LODE [50]: Loss Decoupling, a rehearsal-based
method that decouples the learning objectives of old
and new tasks to minimize interference.

• EMA [78]: Exponential Moving Average, a model
ensemble method that combines models from various
training tasks.

• L2P [89]: Learning to Prompt, a prompt-based
method that prepends learnable prompts selected from
a prompt pool to the embeddings of a pre-trained trans-
former.

• MVP [61]: Mask and Visual Prompt tuning, a prompt-
based method that uses instance-wise feature space
masking.

F.2. Backbone

Among the baseline methods we compare, L2P [89]
and MVP [61] originally reported results using a ViT-B/16
model [20] pre-trained on ImageNet21k, while the other
baselines (AGEM [13], ER [14], EWC++ [12], MIR [2],
GDumb [64], DER++ [8], PCR [52], LODE [50], EMA
[78]) reported results using a ResNet18 [29] architecture.

To ensure a fair comparison, we standardized our experi-
mental setup by evaluating all baselines using the same pre-
trained ViT model (ViT-B/16 and ViT-S/16). For methods
originally implemented with ResNet18, we reimplemented
them with ViT to match the experimental conditions of L2P
and MVP. As shown in Table 12, all methods perform bet-
ter with the pre-trained ViT-B/16 than with ResNet18, sup-
porting our argument that using a pre-trained ViT provides a
more consistent and stronger baseline for performance com-
parisons.

F.3. Training Settings

The following settings are shared by the baseline meth-
ods (and our Online-LoRA) in the experiments:

• Buffer Size: 500. Methods using a buffer include
AGEM [13], ER [14], MIR [2], GDumb [64], PCR
[52], DER++ [8], LODE [50], and EMA [78].

• Optimizer: Adam.

• Batch Size: 64.

In Table 13, we summarize the hyperparameters used for
all baseline methods in our experiments. To ensure a fair
comparison, we adopted these hyperparameters from their
original codebases. However, because the baseline meth-
ods used different backbones and batch sizes in their orig-
inal experiments, we adjusted the learning rates for some
baselines to standardize the comparison across all methods.
For tuning the learning rates, we followed the protocol out-
lined in [58] and conducted a grid search on a small cross-
validation set. The hyperparameter grid for the baselines is
detailed in Table 14.

G. Exploration with Buffer Size
Table 15 we show more results of the impact of buffer

sizes on the performance of replay-based methods (AGEM
[13], ER [14], GDumb [64], MIR [2]).
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Method Acc. w/ ResNet18 Acc. w/ ViT-B/16 Performance Gain (%)

AGEM [13] 5.4±0.6 12.67±1.87 134.63
ER [14] 14.5±0.8 44.85±1.83 209.31
EWC++ [12] 4.8±0.2 10.61±0.74 121.04
MIR [2] 14.8±0.7 48.36±3.11 226.76
GDumb [64] 24.8±0.7 41.00±19.97 65.32
PCR [52] 21.8±0.9 48.48±0.15 122.39
DER++ [8] 15.5±1.0 36.64±6.11 136.39
LODE (DER++) [50] 37.8±1.1 44.29±1.48 17.17
EMA (DER++) [78] 23.2±1.2 42.28±4.36 82.24
EMA (RAR) [78] 35.4±1.2 47.10±0.82 33.05

Table 12. Performance comparison on CIFAR-100 between ResNet18 and pre-trained ViT-B/16 in an online class-incremental learning
scenario. Acc. stands for Accuracy. All rehearsal-based methods use a buffer size of 500 for fair comparison. The results demonstrate that
there is no unfair comparison in our experiments, as all methods benefit from the pre-trained ViT-B/16 model. The performance gain is
computed as the percentage increase from the ResNet18 accuracy to the ViT-B/16 accuracy for each method.

Method CIFAR-100 ImageNet-R ImageNet-S CUB-200 CORe50

AGEM [13] LR=0.0001, WD=0.0001

ER [14] LR=0.0001, WD=0.0001, Episode memory per batch=10

EWC++ [12] LR=0.0001, WD=0.0001, λ=100, α=0.9
Number of training batches after which the Fisher information will be updated: 50

MIR [2] LR=0.0001, WD=0.0001, Number of subsample=50

GDumb [64] LR=0.001, WD=0.0001, Minimal learning rate: 0.0005,
Gradient clipping=10, Epochs to train for memory=30

PCR [52] LR=0.0001, WD=0.0001, Episode memory per batch=10,
Temperature=0.09, Warmup of buffer before retrieve=4

DER++ [8] LR=0.0003, α=0.2, β=0.5

LODE [50] LR=0.0003, C=1.0, ρ=0.1

EMA [78] LR=0.0002, λ for warm-up: 0.9, λ=0.99

L2P [89] LR=0.003, Size of the prompt pool=10, Length of a single prompt=10, Number of prepended prompt=4

MVP [61] LR=0.005, γ=2.0, m=0.5, α=0.5

Table 13. Hyperparameters for the baseline methods on ViT-B/16. LR: learning rate. WD: weight decay.

As shown in Table 15, when the buffer size increases,
all replay-based methods see improvements in their perfor-
mance across the benchmarks. Notably, when the buffer
size hits 5000 (a large capacity; 20% of the ImageNet-R
training set, 12.5% of the ImageNet-S training set), the dif-
ference in performance between GDumb and other replay-
based methods narrows. This suggests that the sophisticated
memory retrieval strategies employed by these other meth-
ods do not significantly outperform GDumb’s simple ap-
proach of training directly on the buffered data. Moreover,
the performance of rehearsal-based methods drops when the
buffer size shrinks. This highlights the efficiency of our

Online-LoRA, which achieves high performance using just
a minimal buffer size of 4.

H. Computation Analysis
In this section, we present the model parameter size,

training FLOPs, and training time for our Online-LoRA and
the baseline methods.

As shown in Table H, our Online-LoRA model intro-
duces approximately 0.6M additional parameters due to the
inclusion of LoRA parameters, which represents a negli-
gible increase (0.69%) compared to the original size of
the ViT-B/16 model. Notably, our memory buffer con-
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Method CIFAR-100 ImageNet-R ImageNet-S CUB-200 CORe50

AGEM [13] LR: [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1]
WD: [0.0001, 0.001, 0.01, 0.1]

ER [14] LR: [0.0001, 0.0003, 0.001, 0.003]
WD: [0.0001, 0.001, 0.01, 0.1]

EWC++ [12] LR: [0.0001, 0.001, 0.01, 0.1]
WD: [0.0001, 0.001]

MIR [2] LR: [0.0001, 0.001, 0.01, 0.1]
WD: [0.0001, 0.001]

GDumb [64] LR: [0.001, 0.01, 0.1
WD: [0.0001, 0.000001]

PCR [52] LR: [0.0001, 0.001, 0.01, 0.1]
WD: [0.0001, 0.001]

DER++ [8] LR: [0.0003, 0.003, 0.03]

LODE [50] LR: [0.0003, 0.003, 0.03]

EMA [78] LR: [0.0001, 0.0002, 0.0003, 0.0004, 0.0005]

Table 14. Hyperparameter grid for the baseline methods using the ViT-B/16 backbone. LR: learning rate; WD: weight decay. Since
L2P [89] and MVP [61] use the same backbone and batch size as in our experiments, their learning rates were not adjusted.

Buffer size Method Split-ImageNet-R Split-ImageNet-S Core50

500

AGEM [13] 5.60±2.74 0.16±0.04 80.15±2.97

ER [14] 40.99±3.96 30.21±0.70 85.85±1.35

MIR [2] 41.51±2.99 30.33±3.81 74.35±4.07

GDumb [64] 8.87±1.36 1.65±0.22 77.20±3.49

1000

AGEM [13] 7.16±1.56 0.23±0.04 78.73±3.87

ER [14] 44.71±2.63 34.32±0.53 84.27±4.11

MIR [2] 46.65±5.63 33.99±1.72 82.64±1.12

GDumb [64] 19.19±1.36 2.71±0.12 78.09±3.75

5000

AGEM [13] 7.21±0.34 0.12±0.02 77.57±3.56

ER [14] 47.23±2.71 37.65±0.23 81.32±2.19

MIR [2] 49.33±3.49 35.90±2.35 81.18±3.20

GDumb [64] 46.08±0.64 9.68±0.28 69.42±1.06

Ours 48.18±0.63 47.06±0.24 93.71±0.01

UB 76.78±0.44 63.82±0.02 95.60±0.01

Table 15. Results of replay-based methods with different buffer size. AFinal metric and ViT-B/16 model is used. Each dataset has 10 disjoint
tasks. UB is the upper-bound baseline trained on the i.i.d. data of the datasets. The best results are noted by bold.

tains only 4 data samples, whereas other baselines (except
EWC++) require at least 500 samples in their buffers to
achieve comparable performance (see Appendix G for more
details). Regarding computational consumption measured
by FLOPs during training, Online-LoRA demonstrates ad-
vantages over EWC++ [12], thanks to our efficient com-
putation of the importance weight matrix, as explained in

Section 3.3 of the main paper. The extremely low FLOPs of
GDumb [64] can be attributed to its design, which involves
greedily updating the memory buffer without employing ad-
ditional strategies. However, its training time is relatively
high because retraining is triggered frequently to maintain
a balanced memory buffer, which adds overhead despite the
low FLOPs.
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Method #params (M) FLOPs (×1015) Training time (s)

AGEM [13] 85.88 140.52 828.39
ER [14] 85.88 140.05 849.43
EWC++ [12] 85.88 214.36 1076.53
GDumb [64] 85.88 18.44 2078.59
MIR [2] 85.88 161.04 1069.29
Ours 86.47 151.20 864.60

Table 16. Computational statistics for Online-LoRA and baseline methods on CIFAR-100 in the online class-incremental learning scenario
using the ViT-B/16 backbone. FLOPs are measured as ’forward FLOPs per GPU’ using the DeepSpeed FLOPS Profiler [60]. All experi-
ments are conducted on a single NVIDIA A100 GPU.

I. Task Accuracy
In this section, Figure 5 and Figure 6 show task accuracy

as a function of the number of learning tasks as described in
Section 4.4 in the main paper. The ViT-B/16 model is em-
ployed on the Split ImageNet-S dataset with 20 tasks. These
results demonstrate that our Online-LoRA consistently out-
performs the other methods in mitigating the forgetting of
previously learned tasks.

Figure 5a shows that AGEM [13] begins with an initial
accuracy of ∼10%. However, this accuracy drastically de-
creases for subsequent tasks, eventually dropping to zero.
Given that the Split ImageNet-S dataset consists of 20 tasks
with 500 classes per task, AGEM’s performance is no bet-
ter than that of a random model, which would have an ex-
pected accuracy of 0.2%. This dramatic decline is primarily
due to the increasingly restrictive constraints placed on gra-
dient updates as the number of tasks increases. Such con-
straints significantly hurt the model’s ability to learn from
new tasks, showing a fundamental weakness of AGEM in
handling long sequences of diverse tasks. A similar issue
was observed with EWC++ [12], another regularization-
based approach.

In contrast, our Online-LoRA model does not encounter
this problem even though an online weight regularization is
used. This is because our model is continuously expanded
by adding new LoRA parameters (see Section 3.2 in the
main paper). This strategy allows the model to adapt to
new information more flexibly, bypassing the learning lim-
itations encountered by traditional regularization methods
like AGEM and EWC++.

J. Code
Our code will be publicly available at:

https://github.com/Christina200/Online-LoRA-official.git.
Our implementation of LoRA is based on the codebase of
MeLo [103].
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(a) Task accuracy of task #2
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(b) Task accuracy of task #3
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(c) Task accuracy of task #5
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(d) Task accuracy of task #6
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(e) Task accuracy of task #8
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(f) Task accuracy of task #9

Figure 5. Task accuracy versus the number of learning tasks of task #2 to task #9. Our Online-LoRA consistently outperforms all the other
methods in maintaining accuracy on previously learned tasks. Note that the recorded accuracy for initial tasks is zero, not due to poor
model performance, but because our evaluation prioritizes mitigating forgetting in tasks the model has already encountered.
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(a) Task accuracy of task #11
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(b) Task accuracy of task #12
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(c) Task accuracy of task #14
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(d) Task accuracy of task #15
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(e) Task accuracy of task #16
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(f) Task accuracy of task #17

Figure 6. Task accuracy versus the number of learning tasks of task #11 to task #17. Compared to the results of task #2 to task #9 in
Figure 5, our Online-LoRA has greater advantages over the other methods for these newer tasks #11 to task #17. Zero accuracy for initial
tasks results from not measuring them at the time the specific task had not been learned yet.
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Encoders and ensembles for task-free continual learning.
arXiv preprint arXiv:2105.13327, 2021. 2

[71] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott San-
ner, Hyunwoo Kim, and Jongseong Jang. Online class-
incremental continual learning with adversarial shapley
value. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9630–9638, 2021. 2

[72] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott San-
ner, Hyunwoo Kim, and Jongseong Jang. Online class-
incremental continual learning with adversarial shapley
value. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 9630–9638, 2021. 2

[73] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. Advances
in neural information processing systems, 30, 2017. 2

[74] Reza Shokri and Vitaly Shmatikov. Privacy-preserving
deep learning. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security,
pages 1310–1321, 2015. 2

[75] James Smith, Yen-Chang Hsu, Lingyu Zhang, Ting Hua,
Zsolt Kira, Yilin Shen, and Hongxia Jin. Continual dif-
fusion: Continual customization of text-to-image diffusion
with c-lora. ArXiv, abs/2304.06027, 2023. 3

[76] James Seale Smith, Paola Cascante-Bonilla, Assaf Arbelle,
Donghyun Kim, Rameswar Panda, David Cox, Diyi Yang,
Zsolt Kira, Rogerio Feris, and Leonid Karlinsky. Construct-
vl: Data-free continual structured vl concepts learning. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 14994–15004, 2023.
3

[77] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta,
Paola Cascante-Bonilla, Donghyun Kim, Assaf Arbelle,
Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-
prompt: Continual decomposed attention-based prompting
for rehearsal-free continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11909–11919, 2023. 1, 2

[78] Albin Soutif-Cormerais, Antonio Carta, and Joost Van de
Weijer. Improving online continual learning performance
and stability with temporal ensembles. In Conference on
Lifelong Learning Agents, pages 828–845. PMLR, 2023. 5,
6, 8, 16, 17, 18

[79] Yuwen Tan, Qinhao Zhou, Xiang Xiang, Ke Wang,
Yuchuan Wu, and Yongbin Li. Semantically-shifted incre-
mental adapter-tuning is a continual vitransformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 23252–23262, 2024. 3

24

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed


[80] Eli Verwimp, Shai Ben-David, Matthias Bethge, An-
drea Cossu, Alexander Gepperth, Tyler L Hayes, Eyke
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